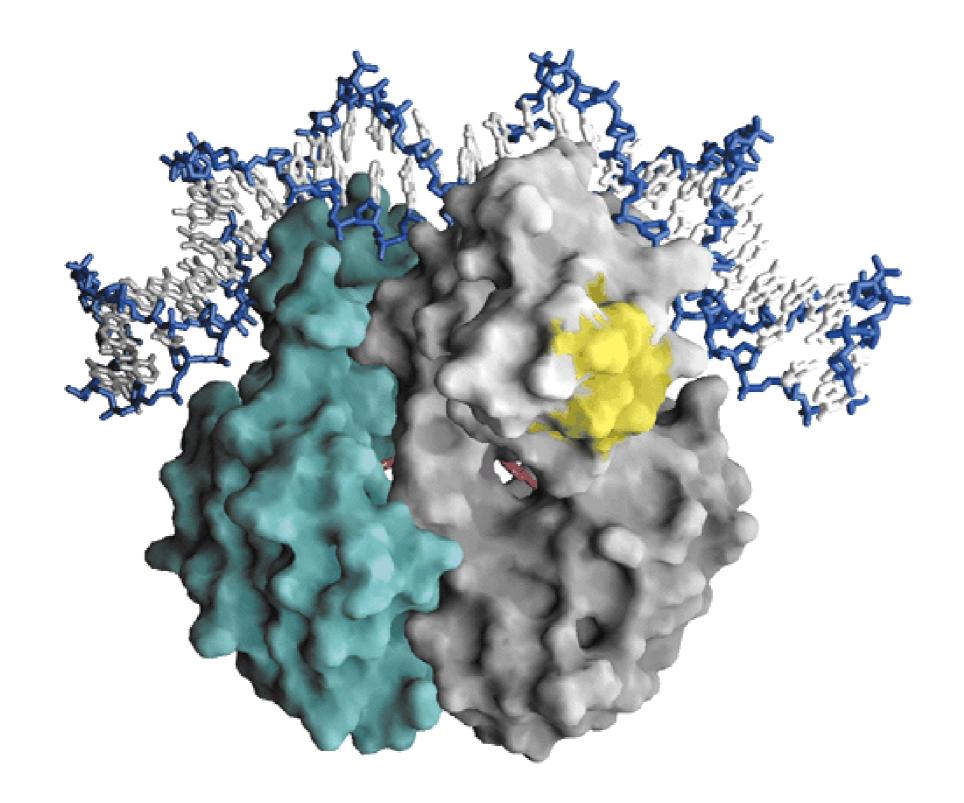
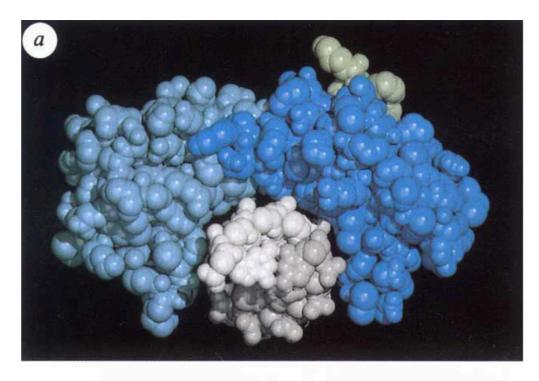

The unfavorable enthalpy contribution associated with DNA distortion is compensated by a favorable entropy




### $K_D$ and $\Delta G$ values for protein-DNA binding per site

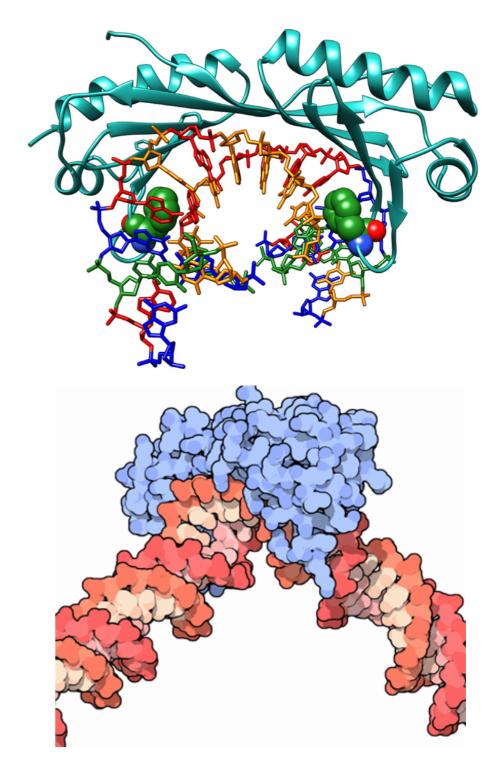
Specific binding of a protein to DNA varies over a relatively small range of  $\Delta G_{bind,sp} = -9$  to -16 kcal/mol, with ~60 kcal/mol for  $\Delta H$  and T $\Delta S$  $\Rightarrow \Delta G_{bind,sp} \approx \text{const.}$  (-11.7 ± 1.6 kcal/mol)  $\Rightarrow \Delta H = -T \cdot \Delta S - 11.7$  kcal/mol

Protein needs to select specific binding site from unspecific sites  $\Rightarrow \Delta\Delta G(\text{specific - unspecific}) \sim -5 \text{ to -9 kcal/mol}$ 


Protein binding must be reversible on the cell's time scale  $\Rightarrow \Delta G_{bind,sp} \leq -16 \text{ kcal/mol}$ 

Molecular structure of E. coli CRP (also called CAP for catabolite gene activator protein)

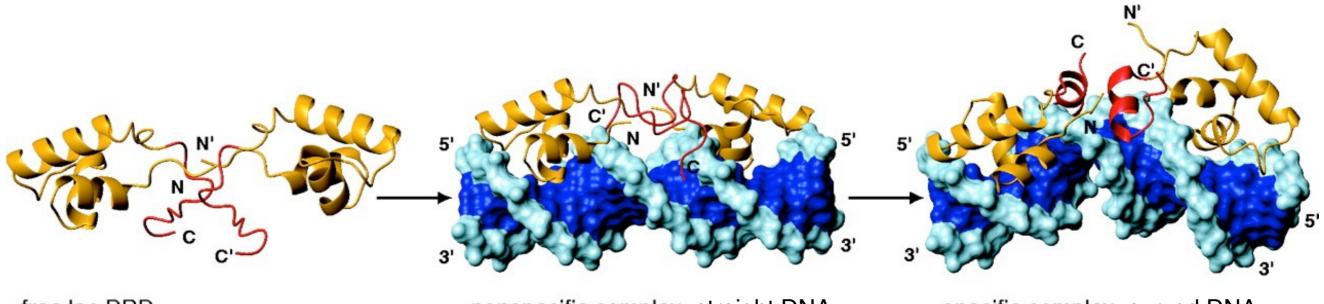



### TATA-box binding protein (TBP)

#### Predicted TBP DNA complex






#### TBP-DNA co-crystal structure

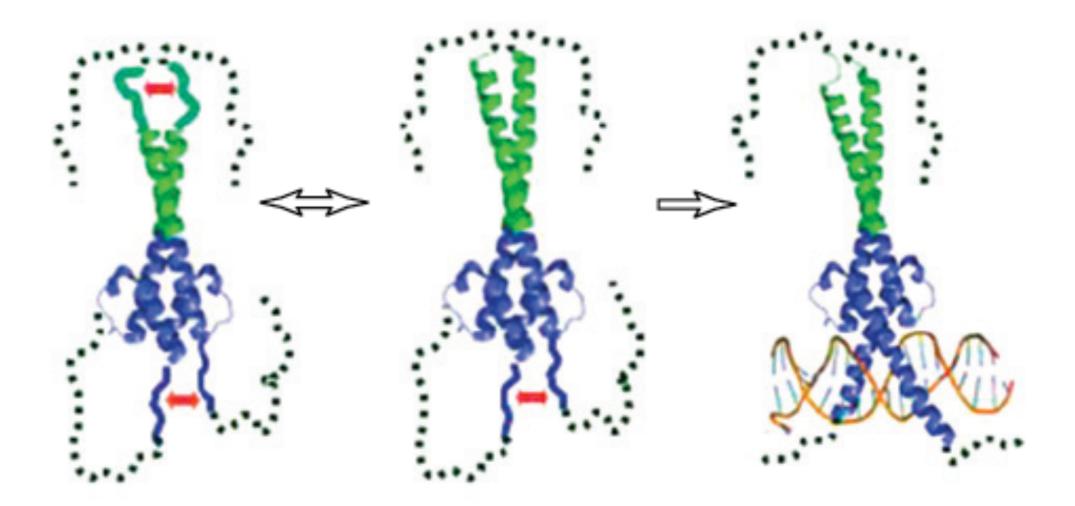


Nikolov 1992, Nature

Kim 1993, Nature

# The hinge region (50-62 in red) of Lac-DBD is folded only in the specific complex with DNA

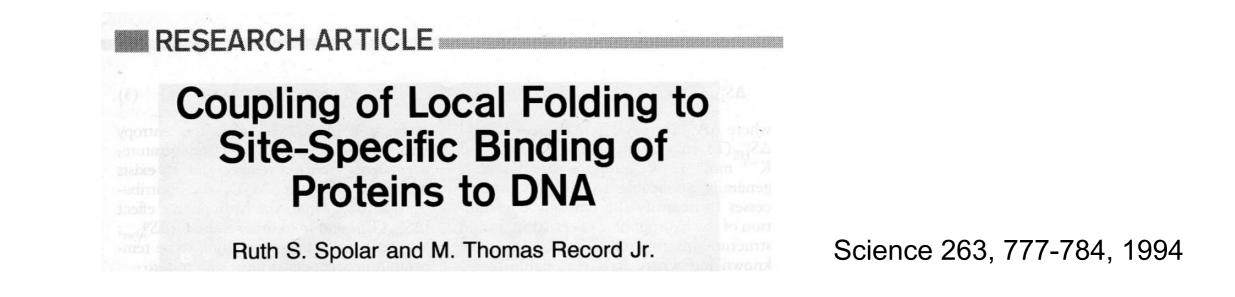



free lac DBD

nonspecific complex, straight DNA

specific complex, curved DNA

- folding of hinge region with specific contacts in minor groove
- specific interactions major groove
- less electrostatic interactions
- curvature of DNA


Local folding of the Max transcription factor upon dimerization and binding



The Max transcription factor (PDBcode: 1NKP) binds DNA as a dimer. The disordered N-terminal region (upper dotted line) reduces the electrostatic repulsion (red arrows) between the two monomers, and increases the population of the folded state at the flanking leucine zipper (green). This also stabilizes the bHLH region (blue) and thus improves binding affinity for DNA.

# Application from temperature dependence of $\Delta H$ and $\Delta S$ to specific protein-DNA binding

- A large negative heat capacity is observed
- This suggests burial of nonpolar surface area
- In addition folding/conformational changes of the protein occur upon DNA binding
- For specific/unspecific binding this effect can be different
- Example: lac repressor



The analysis of  $\Delta S_{f}$  for protein binding to DNA is conducted at the characteristic temperature T<sub>s</sub> where  $\Delta S_{bin} = 0$  so that:

$$\Delta S_{bin}(T_S) = 0 = \Delta S_{HE}(T_S) + \Delta S_{rt} + \Delta S_{PE} + \Delta S_{other}$$

The term  $\Delta S_{other}$  arises primarily from folding/conformational changes in the protein and/or the DNA upon specific DNA binding.

e.u. = entropy units = cal mol<sup>-1</sup> 
$$K^{-1}$$

Protein folding includes two dominant and opposing contributions to the entropy:

a) One positive from the hydrophobic effect or the "release" of water on burial of nonpolar surfaces

b) One negative from the reduction in conformational entropy

$$\Delta S_{fold}(T_S) = 0 = \Delta S_{HE}(T_S) + \Delta S_{conf}$$

## S&R, Table 1: Protein folding

#### 325 cal K<sup>-1</sup>mol<sup>-1</sup>/56 residues = 5.8 cal K<sup>-1</sup>mol<sup>-1</sup> :

| Protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | R   | $-\Delta C_{\text{fold}}^{\text{o}}$ (cal mol <sup>-1</sup> K <sup>-1</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Τ <sub>s</sub> *<br>(K) | $-\Delta A_{np}^{\dagger}$<br>$(Å^2)^{\dagger}$ | $\Delta S^{\circ}_{\rm HE}(T_{\rm S})$ ‡<br>(e.u.) | $-\Delta s_{\text{other}}^{\text{o}}$ (e.u.) |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------------------------------|----------------------------------------------------|----------------------------------------------|
| Streptococcal protein G,<br>domain B1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 56  | 620 ( <i>68</i> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 272                     | 2900                                            | 325                                                | 5.8                                          |
| BPTI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 58  | 720 (24)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 306                     | 2640                                            | 196                                                | 3.4                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | 400 (69)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 221                     |                                                 | 471                                                | 8.1                                          |
| Parvalbumin b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 108 | 1100 (70)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 268                     | 5485                                            | 640                                                | 5.9                                          |
| Ribonuclease A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 124 | 1230 (25)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 255                     | 5815                                            | 771                                                | 6.2                                          |
| Lysozyme (hen egg white)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 129 | 1540 (25)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 270                     | 6870                                            | 786                                                | 6.1                                          |
| Ferricytochrome c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 104 | 1730 (25)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 294                     | 5540                                            | 483                                                | 4.6                                          |
| Staphylococcal nuclease                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 141 | 1820 (25)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 288                     | 7880                                            | 738                                                | 5.2                                          |
| Holo <sup>ll</sup> myoglobin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 153 | 2770 (25)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 301                     | 9710                                            | 773                                                | 5.1                                          |
| β trypsin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 223 | 2850 (25)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 281                     | 11830                                           | 1200                                               | 5.4                                          |
| Papain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 212 | 2920 (25)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 290                     | 12755                                           | 1167                                               | 5.5                                          |
| α chymotrypsin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 245 | 3020 (25)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 280                     | 14770                                           | 1517                                               | 6.2                                          |
| Carbonic anhydrase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 256 | 3820 (25)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 290                     | 15760                                           | 1442                                               | 5.6                                          |
| 그는 그가 방법에 대해 대한 사람들에게 대해 가장을 했다. 그는 것은 것은 것은 것은 것을 하는 것을 하는 것이 것을 하는 것이 가지 않는 것을 하는 것을 수 있다. 것을 수 있는 것을 수 있다. 것을 수 있는 것을 하는 것을 수 있는 것을 수 있다. 것을 하는 것을 수 있는 것을 수 있는 것을 수 있는 것을 수 있는 것을 수 있다. 것을 수 있는 것을 수 있다. 것을 수 있는 것을 수 있다. 것을 수 있는 것을 수 있다. 것을 수 있는 것을 수 있다. 것을 수 있는 것을 수 있다. 것을 것을 것을 수 있는 것을 수 있는 것을 수 있는 것을 것을 것을 것을 것을 것을 수 있는 것을 수 있는 것을 수 있는 것을 수 있는 것을 것을 것을 것을 것을 것을 것을 것을 것을 수 있는 것을 |     | State Constraints in the Second Se<br>Second Second Se<br>Second Second Sec | 297                     | 23730                                           | 1990                                               | 5.4                                          |
| Pepsinogen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 370 | 6090 (25)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 297                     | 23730                                           | 1990<br>Average                                    | Ο.                                           |

\*Values of  $T_{\rm S}$  were calculated from values of  $\Delta C_{\rm fold}^{\circ}$  and  $\Delta S_{\rm fold}^{\circ}$  cited in the reference indicated in column 3. Reported uncertainties in  $\Delta C_{\rm fold}^{\circ}$  range from 5 to 20 percent. Corresponding uncertainties in  $T_{\rm S}$  range from 1 to 7 K degrees. †Calculations of  $\Delta A_{\rm np}$  model the denatured state as an extended  $\beta$  chain (26, 27). The value of  $\Delta A_{\rm np}$  for folding the B1 domain of streptococcal protein G was calculated as described in (27) from Brookhaven Protein Database (67) file 2GB1. All other values of  $\Delta A_{\rm np}$  are from (26). ‡Eq. 2.  $\Delta S_{\rm other}^{\circ} = \Delta S_{\rm other}^{\circ}/\Re$ , calculated from Eq. 4. [In this and subsequent tables, holo refers to the protein associated with its cofactor.

 $T\Delta S_{conf} = 5.6 \text{ cal } \text{K}^{-1} \text{ mol}^{-1} \cdot 298 \text{ K} = 1.7 \text{ kcal mol}^{-1}$ 

### $\Delta S_{HE}$ : Burying non polar surfaces with an area $\Delta A_{np}$

$$\Delta S_{HE}(T_S) = 0.32 \Delta A_{np} \ln \frac{T}{386}$$

The entropy change is proportional to the unpolar surface area "buried" in the folded protein. The favorable entropic contribution is probably the effect of reduced ordering of water around non-polar surfaces.

$$\Delta S(T) = \Delta C_{\rm P} \cdot \ln \left(\frac{T}{T_{\rm S}}\right)$$

Conclusion 1 from entropy analysis:

The unfavorable conformational entropy of folding per residue is

 $\Delta S = -5.6$  cal mol<sup>-1</sup> K<sup>-1</sup> or T $\Delta S = -1.7$  kcal mol<sup>-1</sup>

# $\Delta S_{rt}$ : Unfavorable entropy due to loss of movements of protein upon binding

Loss of rigid body rotational and translational entropy  $\Delta S_{rt}$ 

$$\Delta S_{bin}(T_S) = 0 = \Delta S_{HE}(T_S) + \Delta S_{rt}$$

Estimated from studies of entropic changes arising from rigid body protein-protein association.

# S&R, Fig. 1: Rigid body association for subtilisin binding to its inhibitor protein

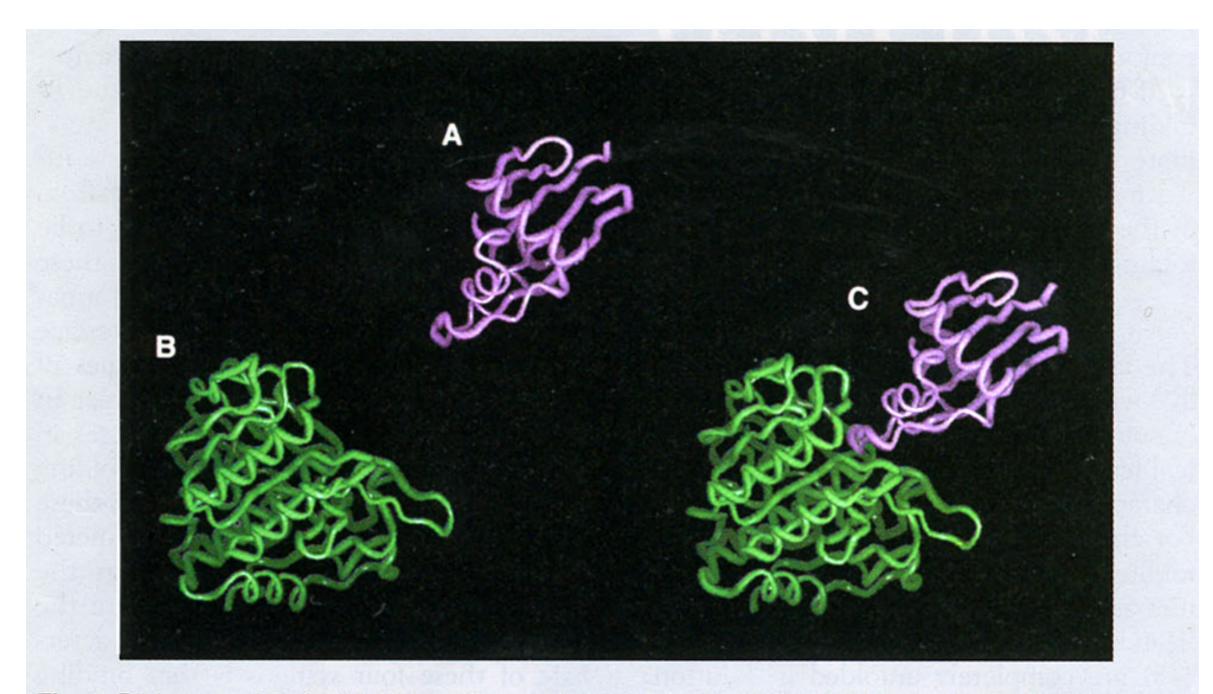



Fig. 1. Ribbon model of a "rigid-body" association. X-ray crystallographic structures of (A) subtilisin inhibitor monomer (purple, PDB file 2SSI) and (B) uncomplexed subtilisin (green, PDB file 2ST1), shown in the same orientation as in the complex. (C) Enzyme-inhibitor complex (PDB file 2SIC), same colors as in (A).

### S&R, Table 3: Rigid body association

the met The first four cost

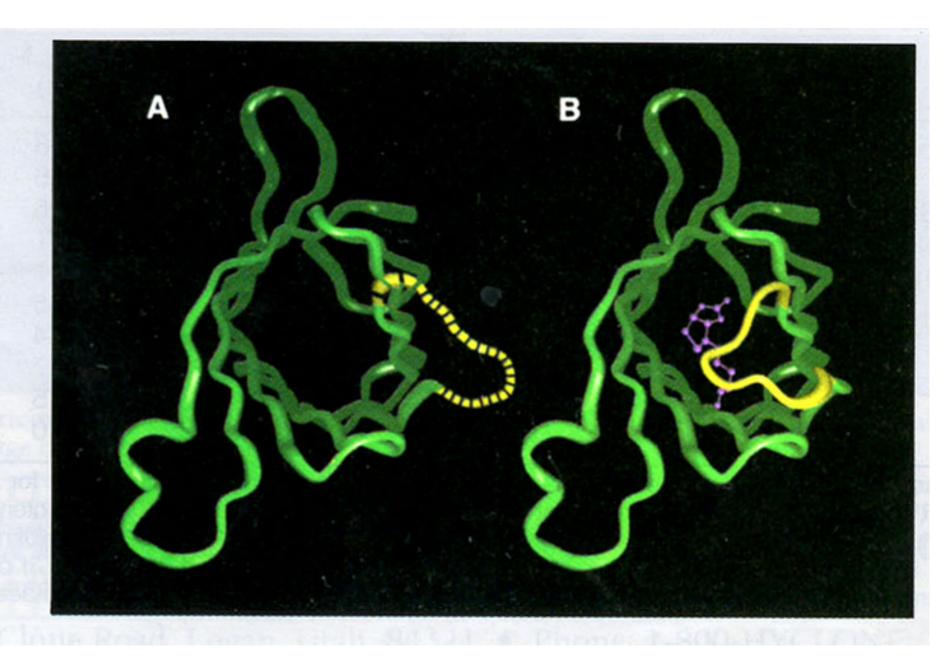
Table 3. Entropic contributions to "rigid body" associations.

| Process                                                                     | $-\Delta C_{assoc}^{o}$<br>(cal mol <sup>-1</sup> K <sup>-1</sup> ) | Τ <sub>s</sub> *<br>(K) | $\Delta S^{\circ}_{ m HE}(T_{ m S})^{\dagger}$ (e.u.) |  |
|-----------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------|-------------------------------------------------------|--|
| Soybean inhibitor + trypsin $\rightarrow$ complex                           | 440 (83)                                                            | 349                     | (60)                                                  |  |
| Subtilisin inhibitor + subtilisin monomer $\rightarrow$ complex             | 240 (71)                                                            | 339                     | 41 -                                                  |  |
| Subtilisin inhibitor + $\alpha$ chymotrypsin monorner $\rightarrow$ complex | 270 (84)                                                            | 343                     | (43)                                                  |  |
| FK506 + FKBP-12 → complex                                                   | 260 (73)                                                            | 289                     | 60                                                    |  |
| a is the to I <sub>2</sub> and to the molecular mass of the                 | systems, sufface are                                                | ge: 50 ± 10             |                                                       |  |

\*Values of  $T_{\rm S}$  calculated from values of  $\Delta C^{\circ}_{\rm assoc}$ ,  $\Delta S^{\circ}_{\rm assoc}$  in references cited in column 2.  $\dagger \Delta S^{\circ}_{\rm HE}(T_{\rm S})$  calculated from Eq. 2 with values for  $\Delta A_{\rm np}$  from Table 2. Values of  $\Delta S^{\circ}_{\rm HE}(T_{\rm S})$  in parentheses are calculated from Eq. 3 for systems lacking structural data to evaluate  $\Delta A_{\rm np}$ .

$$\Delta S_{bin}(T_S) = 0 = \Delta S_{HE}(T_S) + \Delta S_{rt}$$

Conclusion 2 from entropy analysis:


The unfavorable entropy for rigid body association of two macromolecules is

 $\Delta S = -50$  cal mol<sup>-1</sup> K<sup>-1</sup> e.u. = entropy units = cal mol<sup>-1</sup> K<sup>-1</sup>

or T $\Delta$ S = -14.9 kcal mol<sup>-1</sup>

# S&R, Fig. 2: Induced folding of an avidin monomer upon binding to biotin

Fig. 2. Ribbon model of avidin-biotin "induced fit" interaction. (A) Model of the uncomplexed avidin monomer in solution (green). Residues (36-44) (dashed loop in yellow) are disordered in the free crystal structure (49) and are inferred to be in a flexible coil state of high conformational entropy in solution. (B) Avidin-biotin complex. Ordering of the looped region (yellow) upon binding encloses biotin (in purple) in a "hydrophobic box" (49).

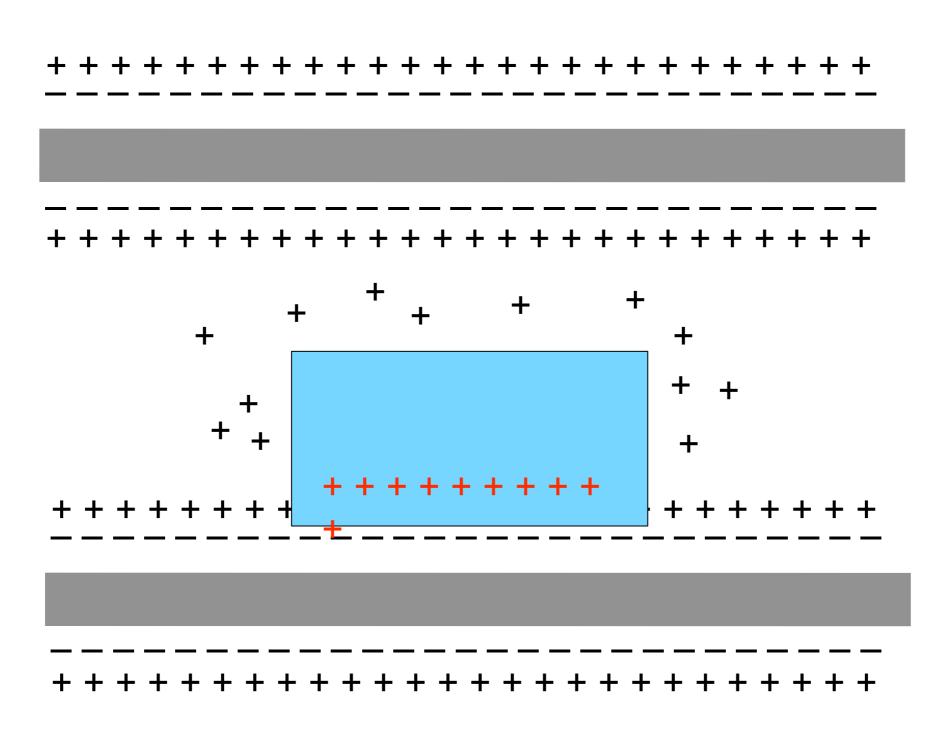


### S&R, Table 4: Coupled folding in protein-protein association

#### R (number of residues involved in folding transition) = $\Delta S_{other}$ /-5.6 cal K<sup>-1</sup> mol<sup>-1</sup>

Table 4. Entropic contributions where folding is coupled to association: predictions of the number of residues participating in the folding transition.

| Process (structural references)                                         | 7 <sub>s</sub> *<br>(K) | $\Delta S^{\circ}_{ m HE}(T_{ m S})^{\dagger}$ (e.u.) | $\Delta S_{rt}^{o}$ ‡<br>(e.u.) | ΔS <sup>o</sup> <sub>other</sub> §<br>(e.u.) | ्री <sup>th</sup> ∥ | भstr¶<br>8 |
|-------------------------------------------------------------------------|-------------------------|-------------------------------------------------------|---------------------------------|----------------------------------------------|---------------------|------------|
| Angiotensin II (48) + antibody Fab 131 (85) $\rightarrow$ complex (85)  | 312                     | 68                                                    | -50                             |                                              |                     |            |
| Avidin (49) + biotin $\rightarrow$ complex (49)                         | 291                     | 85                                                    | -50                             | -35                                          | 6                   | 9          |
| S-peptide (47) + S-protein (47) $\rightarrow$ ribonuclease S (86)       | 253#                    | 145                                                   | -50                             | -95                                          | 17                  | 15         |
| L-tryptophan + apo Trp R monomer $(11) \rightarrow \text{complex} (12)$ | 263                     | 127                                                   | -50                             | -77                                          | 14                  | 17**       |
| Holo Trp R dimer (11) + trp operator DNA $\rightarrow$ complex (12)     | 319                     | 147                                                   | -50                             | -97                                          | 17                  | 16         |
| 2 GR DBD (13) + DNA $\rightarrow$ complex (14)                          | 308                     | 285                                                   | -100                            | -185                                         | 33                  | 40         |
| 3 glucagon (81) $\rightarrow$ trimer (87)                               | 271                     | 364                                                   | -100                            | -264                                         | 47                  | 48-72      |
| 4 melittin (82) $\rightarrow$ tetramer (88)                             | 313                     | 477                                                   | -150                            | -327                                         | 58                  | 104        |
| 2 arc repressor (78) $\rightarrow$ dimer (77)                           | 289                     | 525                                                   | -50                             | -475                                         | 85                  | 80-92      |
| 2 $\lambda$ cro repressor (80) $\rightarrow$ dimer (79)                 | 287                     | 620                                                   | -50                             | -570                                         | 102                 | 120        |


\*References for data used to calculate  $T_s$  are the same as those for  $\Delta C_{assoc}^{\circ}$  in Table 2.  $\dagger \Delta S_{HE}^{\circ}(T_s)$  evaluated from Eq. 2 with values for  $\Delta A_{np}$  from Table 2.  $\ddagger$  Table 3. §Eq. 5.  $\parallel$ Eq. 6. Propagated uncertainties in  $\Re^{th}$  increase from ±15 percent for  $\lambda$  cro repressor to ±50 percent for angiotensin II, and are typically ±25 percent.  $\P \Re^{str}$  represents the difference between the number of residues folded in the crystal structure of the complex and the number of residues observed to be folded in the free species by NMR, x-ray, or CD as referenced in column 1.  $\#T_s$  estimated from values of  $\Delta C_{assoc}^{\circ}$  (273) and  $\Delta S_{assoc}^{\circ}$  (273) obtained from the temperature dependence of  $\Delta C_{assoc}^{\circ}$  given in (47), based on the assumption that S protein is completely native at 273 K. \*\*Number of residues folded in the complex based on the NMR structure.

$$\Delta S_{bin}(T_S) = 0 = \Delta S_{HE}(T_S) + \Delta S_{rt} + \Delta S_{other}$$

Conclusion 3 from entropy analysis:

The number of residues involved in the folding transition can be calculated from the  $\Delta S_{other}$  term and the value of  $\Delta S = -5.6$  cal mol<sup>-1</sup> K<sup>-1</sup> derived from the entropy analysis of protein folding.

### $\Delta S_{PE}$ : Favorable displacement of ions from the DNA



 $-T\Delta S_{PE} = 6$  to 18 kcal/mol

### Summary of protein and DNA thermodynamics

- Very different distributions of  $\Delta$ H and  $\Delta$ S for protein-DNA binding but similar  $\Delta$ G<sub>bind,sp</sub>  $\approx$  of -11.7 ± 1.6 kcal/mol

- Favorable hydrophobic effect or the "release" of water on burial of nonpolar surfaces on protein and DNA

- Unfavorable entropy loss for rigid body association of 15 kcal mol<sup>-1</sup> rotational/translation

- Unfavorable conformational entropy of induced folding during binding of 1.7 kcal mol<sup>-1</sup> per amino acid residue

- 6-18 kcal mol<sup>-1</sup> from entropically favorable displacements of counter-ions upon protein binding to DNA, which drives binding and increases with the interaction surface of the DNA that gets counter-ions displaced